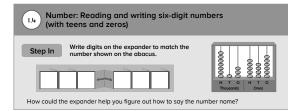
Module I


STEPPING STONES 20

Core Focus

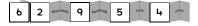
- Number: Reading and writing six-digit numbers and working with place value
- Multiplication: Extending the twos, fours, eights, and tens facts and exploring patterns

Number

- Number sense strategies from previous grades now extend to six-digit numbers. Students learn to read, write, draw, compare, and order these numbers using familiar and new models.
- Six-digit numbers are read in groups of three digits (starting from the left).
 Use of the **numeral expander** in all these lessons help students make sense of reading and ordering these numbers. The **abacus** also helps students visualize place value.

In this lesson, students use a numeral expander to read and write six-digit numbers. An abacus is used to represent these numbers.

I.7 Num	ber: Working with place va	lue					
Step In How does the to a rod on ei	What number is shown on this al e value change if the bead is moved ther side?				TO	н 1	•
	The value is 10 times greater if moved one rod to the Left. I divide the value by 10 if the bead is moved one rod to the right .						
What does th	is chart show?	_					
Nill			Thousands		Ones		
		н	т	0	н	т	0
C	1,000 is 10 times greater than 100, or 100 times greater than 10. What else do you notice?		×10 ×	10 ×		10 ×	


In this lesson, students consider the role of place value to write six-digit numbers. They use an abacus model and place-value chart to assist in creating new numbers.

Ideas for Home

- Find six-digit numbers like city populations, or make up your own, and ask your child to read them out loud.
- Compare six-digit numbers and ask your child to explain why one number is greater or less than another.

Glossary

 Numeral expanders show how the position of each digit in a number represents a designated place value.

 An abacus is a calculation tool that excels at demonstrating place value.
 For example, this model shows how 3 ten-thousands is the same as 3 × 10,000, and so on.

Helpful videos

View these short one-minute videos to see these ideas in action.

www.bit.ly/O1_9 www.bit.ly/O1_33

STEPPING STONES 20

Multiplication

• Students extend multiplication strategies that were explained in earlier grade levels to multiply one- and two-digit numbers, including the **double-double strategy** and the **double-double strategy**.

lication: Extending the fours and eigh	ts facts
How many stickers are on this sheet?	STICKERS
u calculate the number our of these sheets?	***** ***** *****
I can extend the double-double strategy. Double 24 is 48 . Double 48 is 96.	*****
	How many stickers are on this sheet? I calculate the number our of these sheets? I can extend the double-double strategy.

In this lesson, students extend strategies to multiply one- and two-digit numbers.

• Students explore patterns involving place value in multiplication. The numeral expander provides a place-value model that discourages inaccurate explanations like *I add zeros when I multiply by multiples of IO.*

I.12 Multiplication: Exploring patterns				
Step In What is the same about these quantities? What is different?				
3 × 4 ones = 2 ***				
3 × 4 tens = I 2 ^{10%} 0				
3 × 4 hundreds = I 2 hundreds 0 0				
3 × 4 thousands = 1 2 (100%), 0 0 0				
What is another way to say the last three products? What are the different ways you could say the products of these?				
4 × 6 tens = 4 × 6 hundreds =				
I ₄ × 6 thousands =				

The numeral expander shows that 3 × 4 tens equal 12 tens, which is the same as 120, etc. Accurate place-value language supports deep understanding of multiplying and dividing by magnitudes of ten.

Ideas for Home

 Practice the doubles strategy with household items. Four pairs of shoes is double double the total number of shoes, or double double 6 would describe the total number of eggs in two full cartons.

Glossary

The doubles strategy is a method of mental multiplication. If a number is multiplied by a power of two, the calculation can be performed by repeatedly doubling the numbers. For example, 4 × 8 = 32 is the same as 4 × 2 × 2 × 2, or double double double 4.