The Power of Discourse

Melinda Schwartz, Ed.D. Learning Services Educator ORIGO Education m_schwartz@origomath.com

Rhonda Bernard, M.Ed. Instructional Coach

Instructional Coach Allen ISD rrbernard@att.net

Downloadable resources available at

Sheliah thinks that % is greater than %. Peter says that % is less than %. Who is correct and why? Use numbers and symbols to thoroughly explain your answer.

, This Would be six peices This is sevan pices ->

Peter is wronge because Is is more than 3 4 Sheliahis correct because I is more than 4 Shelia Peter ti = corred

Talk Comes First

Mathematical Λ "Literacy floats on a sea of talk."

Britton, J. (1970). Language and Learning. Coral Gables, FL: University of Miami Press.

Research Says

Classroom Discussion: Visible Learning in Mathematics

Hattie, J., et. al. (2017). Visible learning for mathematics, grades K-12: What works best to optimize student learning. Thousand Oaks, CA: Corwin.

Mathematical Discourse Defined

Discourse reaches beyond discussion because it includes "ways of representing, thinking, talking, agreeing, and disagreeing. It is the way ideas are exchanged and what the ideas entail."

Hattie, J., et. al. (2017). Visible learning for mathematics, grades K-12: What works best to optimize student learning. Thousand Oaks, CA: Corwin.

Supporting Discourse - Risk-taking Protocol

- Establish trust
- Give clear directions
 - Think on your own
 - Pair up share ideas with a partner
 - Square up share ideas with another pair
 - Group share
 - Focus on thinking, processes, strategies
 - Include sharing of written work (words and pictures)

1. think 2. talk 3. write 4. share 5. change → fix or ad 6. reflect	2 1-2 min.
Work Togeth	her

Roles During Discourse

Teacher

- Facilitate discourse more student talk, less teacher talk
- Engage students in sharing ideas using multiple representations
- Select and sequence shared work
- Ensure progress towards mathematical goals

Student

- Present and explain ideas and representations
- Seek to understand approaches used by others
- Compare and contrast various
 approaches
- Listen carefully and critique the reasoning of others

Hattie, J., et. al. (2017). Visible learning for mathematics, grades K-12: What works best to optimize student learning. Thousand Oaks, CA: Corwin.

Feathering the Nest

- Model and practice a climate of trust, respect, and support
 - Celebrate mistakes
 - Arrange the room to make talking together easier
 - Post and practice talk moves and sentence stems
 - Define roles
- Plan for questioning and appropriate tasks

Let's Give 'Em Something to Talk About: The Influence of Tasks on Discourse

- Does the problem involve meaningful mathematics?
- Does the problem provide an opportunity for students to apply and extend mathematics?
- Is the problem interesting to students?
- Is the problem challenging for students?
- Does the problem support the use of multiple strategies?
- Will students' interactions with the problem reveal information about students' mathematical understanding?

Dixon, J. K., Adams, T. L., Nolan, E. C., & In Kanold, T. D. (2015). Beyond the common core: A handbook for mathematics in a *PLC at work*.

Encouraging Mathematical Thinking

- Remember to include
 - Articulation of mathematical ideas
 - Connecting representations and abstractions
 - Productive lingering

Discourse and Metacognition

- Self-questioning
 - What do I know about the problem?
 - What is the problem asking me to find out?
 - What strategies can I use to understand the problem better?
 - Have I seen something like this before?
- Self-reflection
 - How is my answer similar to/different from my other students' solutions?
 - How do I know my solution is correct?
 - How well did I communicate my thinking?
 - Could I have done this a different way?
 - What if...?

High Level Discourse

- Teacher as facilitator, guide on the side
- Student initiated talk, including questions directed to each other
- Teacher guides students to contrast strategies
- Students justify own thinking
- Students use math drawings to describe their thinking and the thinking of other students
- Students support and shape each other's thinking

Hufferd-Ackles, K., Fuson, K., & Sherin, M. G. (2004). Describing levels and components of a math-talk community. Journal for Research in Mathematics Education.

How	many in this building?		HEAD POLISHERS
Thinking Mat	nematically and Problem Solving	© ORIGO Education	Yellow Tank

2 Jose is 8 years old. Previn is 2 years older than Jose. Sam is younger than Jose. When you add their ages, you get 25. How old is Sam?		
Thinking Mathematically and Problem Solving	© ORIGO Education	Orange Tank

4

This is a mixed-up multiplication table.

Copy the table.

×	3	2		
	15			20
2			10	
		6		
	12			

The top row should show the numbers 2, 3, 4 and 5. The first column should show the numbers 2, 3, 4 and 5. Complete the table.

Thinking Mathematically and Problem Solving

© ORIGO Education

Purple Tank

2

- a. How much more than **50%** of **90** is $\frac{2}{3}$ of **90**?
- b. Write how you figured it out.

Purposeful Classroom Questioning

Focusing Questions

- Help push student thinking forward
 - Where could you start?
 - What are you trying to figure out?
 - Why does that work?
 - Is there another way to approach it? To represent it?
 - How are these ideas related?

Funneling Questions

- Guide the student down the teacher's chosen path.
 - What if you tried this here?
 - So you could find *this* first?
 - What if you did *this* instead of *that*?

Hattie, J., et. al. (2017). Visible learning for mathematics, grades K-12: What works best to optimize student learning. Thousand Oaks, CA: Corwin.

Roles for Questioning

Teacher

- Advance student thinking with focusing questions
- Ask questions that require justification
- Ask intentional questions that make the mathematics visible

Allow wait time

Student

- Expect to be asked to explain, clarify, and elaborate
- Reflect and justify reasoning
- Listen to, comment on, and question classmates comments
- Think carefully and take time to craft a clear response

Support Discourse: Talk Moves and Sentence Stems

- Clarification and explanation
 - Could you describe what you mean?
- Justification
 - How did you know?
- Recognize and challenge misconception
 - I don't agree because..
 - Have you considered an alternative?

- Interpret and use other's statements
 - I heard Charla say...and that makes me think...
- Require evidence
 - Can you give me an example?

Additional Questions to Support Discourse

- What decisions did you make?
- Can you tell me more about...?
- Can you explain a different way?
- What patterns do you notice?
- How does _____ relate to ____?
- What can you tell me without solving the problem (performing computation)?
- Rather than trying to *add* the numbers, try thinking about the pattern.
- What do you think about Jorge's question/statement?
- Who can repeat what Jessica said in their own words?

Hattie, J., et. al. (2017). Visible learning for mathematics, grades K-12: What works best to optimize student learning. Thousand Oaks, CA: Corwin.

Russell, Schifter, & Bastable. (2011) Connecting arithmetic to algebra. Thousand Oaks, CA: Heinemann.

References Cited

Britton, J. (1970). Language and Learning. Coral Gables, FL: University of Miami Press

- Dixon, J. K., Adams, T. L., Nolan, E. C., & In Kanold, T. D. (2015). Beyond the common core: A handbook for mathematics in a PLC at work.
- Hattie, J., et. al. (2017). Visible learning for mathematics, grades K-12: What works best to optimize student learning. Thousand Oaks, CA: Corwin.
- Hiebert, J., & Grouws, D. A. (2007). The Effects of Classroom Mathematics Teaching on Students' Learning. In F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning. Charlotte, NC: Information Age.
- Hoffer, Wendy Ward. (2012). Minds on mathematics: Using math workshop to develop deep understanding in Grades 4-8. Portsmouth, NH: Heineman.
- Hufferd-Ackles, K., Fuson, K., & Sherin, M. G. (2004). Describing levels and components of a math-talk community. Journal for Research in Mathematics Education,.

(2014). Principles to actions : ensuring mathematical success for all. Reston, VA:NCTM, National Council of Teachers of Mathematics,

Russell, S.J., et.al. ((2017) But why does it work? Mathematical argument in the elementary classroom. Portsmouth, NH: Heinemann.

Russell, Schifter, & Bastable. (2011) Connecting arithmetic to algebra. Thousand Oaks, CA: Heinemann.

Wong, H. K., Wong, R. T., & Seroyer, C. (2009). The first days of school: How to be an effective teacher. Mountain View, CA: Harry K. Wong Publications.

