Multiplication Isn't Always Commutative: Exploring the Problems with Problem Solving

Kimberly Morrow-Leong ____

morrowmath@gmail.com @kmorrow-leong Sara Delano Moore

sara@sdmlearning.com @saradelanomoore

Linda M. Gojak

1

Commutative or Not Commutative?

- 1. Putting on your coat and putting on your boots?
- ightharpoonup

- 2. Washing your clothes and drying them?
- 3. Putting on your left shoe and your right shoe?
- **→**
- 4. Hanging up the phone and saying good-bye?
- 5. Sautéeing vegetables and cutting the vegetables?
- 6. Turning on car bluetooth and phone bluetooth to pair?

Write a Word Problem

Represent your problem using counters and pictures. Choose *either* expression.

 2×8

 8×2

*If you have time, work with the other arrangement.

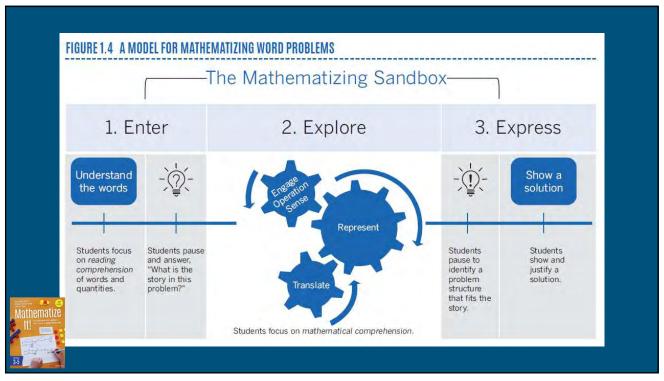
3

Operation Sense

Knowing and applying the full range of work for mathematical operations (for example, addition, subtraction, multiplication, and division).

Number sense and operation sense are separate but complementary ideas.

Operation Sense


- Working Models of Operations
 - Understand and use a wide variety of models of operations beyond the basic and intuitive models of operations.
- Representations of Operations
 - Use appropriate representations of actions or relationships strategically.
- Mathematizing
 - Can mathematize a situation, translating a contextual understanding into a variety of other mathematical representations.
- Number Categories
 - Apply their understanding of operations to any quantity, regardless of the class of number.

5

This is not about computation.

Computational Strategies

- Models of Operations
- Counting on or back
- Doubles
- Bridging ten
- Known related facts
- These are strategies students use to compute the answer, AFTER students understand the situation.
- Operation Sense is about describing what is happening in the situation. What models and representations show the action or relationships in the problem?
- Operation sense comes BEFORE students select a computation strategy to find the solution.

7

What kind of multiplication are these?

Equal Groups (vases)

- Factors have different jobs
 - o How many groups?
 - How large is each group?
- Exchanging quantities changes the meaning.

Area/Array (rug)

- Factors have the same job
- Product has a new unit of measure
- Exchanging quantities typically does not change meaning.

9

Evidence from Research: Japan

U.S. Textbooks

- Investigate the commutative property near the beginning of instruction of facts.
- Treat the commutative property as obvious.
- Does not distinguish multiplier factor (how many groups?) from measure factor (number in a group).

Japanese Textbooks

- Commutative property is introduced after all facts are introduced.
- Do not assume the property is obvious.
- Distinguishes the multiplier factor (how many groups?) from the measure factor (number in a group).

Watanabe, T. (2003). Teaching multiplication: An analysis of elementary school mathematics teachers' manuals from Japan and the United States. *The Elementary School Journal*, 104(2), 111–125. https://doi.org/10.1086/499745.

Evidence from Research: Africa (Ivory Coast)

United States

- U.S. college students frequently used the commutative property.
- Only one U.S. student used the associative property
- Relied on algorithms.

Ivory Coast (Dioula)

- Unschooled Dioula young adults rarely used the commutative property
- Unschooled Dioula young adults frequently used the associative property
- Relied on repeated addition.

Petitto, A. L., & Ginsburg, H. P. (1982). Mental arithmetic in Africa and America: Strategies, principles, and explanations. *International Journal of Psychology*, 17(1-4), 81–102. https://doi.org/10.1080/00207598208247433.

11

Guidelines for using the Commutative Property

- 1. Be mindful of moving out of context to use the commutative property for computation. It may be nonsensical to children.
- 2. Equal Groups is not the best problem type for teaching the commutative property.
- 3. Let the numbers get big (beyond known facts) before you start to focus on the commutative property. Let it be a GIFT! The commutative property should solve a problem for students.
- 4. Write the expression for the problem first (solution), then talk about computation strategies for getting the answer including (perhaps) the commutative property.

ORIGO BIG BOOKS GRADES K-2 Boar 1905 Cerrot, Badour 1 **EN ESPAÑOL** ORIGO

13

Going Beyond Key Words to Make Sense of Word Problems, Grades 3-5

Sara Delano Moore, Kimberly Morrow-Leong, Linda M. Gojak

Help students reveal the math behind the words

Mathematize It! shares a reasoning approach that takes the initial focus off specific numbers and computations and puts it on the actions and relationships expressed in the word problem.

Grades K-2 and 6-8 coming soon!

Gave 20% 3-5 \$32.95, **\$26.95** 240 pages

>>> Order your copy at corwin.com/mathematics

CORWIN Mathematics