

Strategies to Support the English Learners in the Mathematics Classroom

Sandy Szako, M.Ed Resource Advisor s_szako@origomath.com

Andrea Kotowski Learning Services Educator a_kotowski@origomath.com

Learning Goals

Participants will understand that...

- supporting ELLs in the mathematics classroom requires an understanding of language development
- student discourse plays an integral role in developing social and academic language

Participants will know...

• the 5 Guiding Principles for supporting ELLs in the mathematics classroom

Participants will be able to...

• plan and modify math instruction to better meet the needs of ELLs in the mathematics classroom

What do you hope to learn as a result of this professional learning session? V	Vrite a learning goal.

Guiding Principles

- Principle 1: Give ELLs many opportunities to read, to write, to listen to, and to discuss oral and written English and mathematics texts expressed in a variety of ways.
- **Principle 2**: Draw attention to **patterns** in English and mathematics **language structure**.
- Principle 3: Give ELLs classroom time to use their English productively while learning mathematics.
- **Principle 4**: Give ELLs opportunities to **notice their errors** and to **correct their English** while learning mathematics.
- **Principle 5**: Construct activities that maximize opportunities for ELLs to **interact with others** in English.

Frayer Model

Maintaining concepts and skills

Think and Solve

For each square, add the numbers in the shaded boxes to figure out the **magic number**.

Complete each magic square.

a.	16		14
	12	17	10

b.	6	П	
		7	9
	10	3	

In a magic square, the three numbers in each row, column, and diagonal add to make the same number. This is called the **magic number**.

Words at Work

Write in words how you can solve this equation on a number line. You can use words from the list and draw a diagram to help.

216 + 38 = ?

	jump
	total
	hundreds
	tens
	ones
	add
	sum
	-

Do the Ds

Cube 1: DD, DD, DD, DDD, DDD, DDD

Cube 2: 3, 4, 5, 6, 7, 8

How could we figure out the total cost of both items of clothing?

Two friends show the position of different numbers on a number line. They notice that their numbers are each an equal distance from 60. What numbers could they have shown?

Problem Solving Strategies

3 Reads Strategy

What is the action or situation taking place? What are the quantities in the problem?

What questions might you ask about the problem?

Numberless Word Problems

George Pólya's four phases of problem solving

Understand-Plan- Solve-Review

3 Read Strategy: http://www.sfusdmath.org/3-read-protocol.html

Numberless Word Problems: https://bstockus.wordpress.com/numberless-word-problems/

George Polya's four phases of problem solving: https://www.ms.uky.edu/~lee/ma310sp15/polya.pdf

Features of Academic Development

	Performance Criteria	Features
Discourse Level	Linguistic Complexity Quantity and variety of oral and written text	Amount of speech/written text Structure of speech/written text Density of speech/written text Organization and cohesion of ideas Variety of sentence types
Sentence Level	Language Forms and Conventions Types, array, and use of language structures	Types and variety of grammatical structures Conventions, mechanics, and fluency Match of language forms to purpose/perspective
Word/Phrase Level	Vocabulary Usage Specificity of word or phrase choice	General, specific, and technical language Multiple meanings of words and phrases Formulaic and idiomatic expressions Nuances and shades of meaning Collocations

Language Stages

ORIGO's Teaching Model*

Sentence Frames

- Discussion support
- · Contextualizes and gives meaning to vocabulary
- · Gives structure for language skills
- · Scaffolds to help students express their mathematical thinking in speaking and writing

	Langua	ge Support		
Beginning	Α	has		
Intermediate/ Advanced			,, and	, and

Possible Sentence Frames for the Mathematics Classroom

 In order to solve this problem, I need to know
• This is a problem because I see
• I started with an estimate by
 I use the operation because the questions asked me to
 My answer is and I think this is reasonable because
 Another way to solve this would be
 I respectfully agree/disagree with because
Possible Content Specific Sentence Frames
 My number has thousands, hundreds, tens and
ones.
This shape is a because it has sides and
angles.
 My number is a fraction because it has a and
• The array has rows and columns.
• I shaded parts of the shape.
• I partitioned the into
.

Works Cited

- Barton, Mary Lee, and Clare Heidema. Teaching Reading in Mathematics: A Supplement to Teaching Reading in the Content Areas Teacher's Manual (2nd Ed.). Aurora, Co.: Mid-Continent Research for Education and Learning, 2002. Print.
- Bresser, Rusty, Kathy Melanese, and Christine Sphar. Supporting English Language Learners in Math Class, Grades 3-5. Sausalito, CA: Math Solutions Publications, 2008. Print.
- Bresser, Rusty, Kathy Melanese, and Christine Sphar. Supporting English Language Learners in Math Class, Grades K-2. Sausalito, CA: Math Solutions Publications, 2009. Print.
- Chapin, Suzanne H., Mary Catherine. O'Connor, and Nancy Canavan Anderson. Classroom Discussions: Using Math Talk to Help Students Learn, Grades 1-6. Sausalito, CA: Math Solutions Publications, 2003. Print.
- Hill, Jane, and Kathleen Flynn. Classroom Instruction That Works with English Language Learners. Alexandria, VA: Association for Supervision and Curriculum Development, 2006. Print.
- Immersion. Prod. Media That Matters. YouTube. YouTube, 16 June 2009. Web. 30 Oct. 2015. https://www.youtube.com/watch?v=D6HUv2eFdLg
- Kazemi, Elham, and Allison Hintz. Intentional Talk: How to Structure and Lead Productive Mathematical Discussions. Portland, ME: Stenhouse, 2014. Print.
- Kersaint, Gladis, Denisse R. Thompson, and Mariana Petkova. Teaching Mathematics to English Language Learners. New York: Routledge, 2013. Print.
- Ruiz Soto, Ariel G., Sarah Hooker, and Jeanne Batalova. "States and Districts with the Highest
 - Number and Share of English Language Learners." Migration policy.org. Migration Policy Institute, 02 June 2015. Web. 30 Oct. 2015.