Fractions: The Solution to Understanding Tamikia Greene, Ed.D. Andrea Kotowski, NBCT ### **Texas Essential Knowledge and Skills Grades 1-5 Fraction Progression** | | Representation & Interpretation | Equivalence & Comparison | |---------|---|---| | Grade 1 | 1.6.G Partition two-dimensional figures into two and four fair shares or equal parts and describe the parts using words.1.6.H Identify examples and non-examples of halves and fourths. | 1.6.H Identify examples and non-examples of halves and fourths. | | Grade 2 | 2.3.A Partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words. 2.3.C Use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole. 2.3.D Identify examples and non-examples of halves, fourths, and eighths. | 2.3.A Partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words. 2.3.B Explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part. 2.3.C Use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole. 2.3.D Identify examples and non-examples of halves, fourths, and eighths. | | Grade 3 | 3.3.B Determine the corresponding fraction greater than zero and less than or equal to one with denominators of 2, 3, 4, 6, and 8 given a specified point on a number line. 3.3.C Explain that the unit fraction 1/b represents the quantity formed by one part of a whole that has been partitioned into b equal parts where b is a non-zero whole number. 3.3.D Compose and decompose a fraction a/b with a numerator greater than zero and less than or equal to b as a sum of parts 1/b. 3.3.E Solve problems involving partitioning an object or a set of objects among two or more recipients using pictorial representations of fractions with denominators of 2, 3, 4, 6, and 8. 3.7.A Represent fractions of halves, fourths, and eighths as distances from zero on a number line. | 3.3.F Represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a variety of objects and pictorial models, including number lines. 3.3.G Explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model. 3.3.H Compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial models. | ### **Texas Essential Knowledge and Skills Grades 1-5 Fraction Progression** | | Representation & Interpretation | Equivalence & Comparison | |---------|---|--| | Grade 4 | 4.3.A Represent a fraction a/b as a sum of fractions 1/b, where a and b are whole numbers and b > 0, including when a > b. 4.3.B Decompose a fraction in more than one way into a sum of fractions with the same denominator using concrete and pictorial models and recording results with symbolic representations. 4.3.G Represent fractions and decimals to the tenths or hundredths as distances from zero on a number line. | 4.3.C Determine if two given fractions are equivalent using a variety of methods. 4.3.D Compare two fractions with different numerators and different denominators and represent the comparison using the symbols >, =, or <. 4.3.F Evaluate the reasonableness of sums and differences of fractions using benchmark fractions 0, 1/4, 1/2, 3/4, and 1, referring to the same whole. | | Grade 5 | 5.2.A Represent the value of the digit in decimals through the thousandths using expanded notation and numerals. | 5.2.B Compare and order two decimals to thousandths and represent comparisons using the symbols >, <, or =. 5.2.C Round decimals to tenths or hundredths. | Show $\frac{1}{\frac{1}{4}}$ in each of these models. For each model, consider the following questions: - What is the whole? - What does equal-sized mean? - What does the fraction indicate? - What attribute is the focus? ### **Representing Fractions** Teachers and students need to consider the following: - The type of quantity (continuous or discrete?) that the model is intended to represent. - How the whole is defined. - What equal-sized means in the model. - What the fraction indicates. ### Representing Fractions Set Model The number – a discrete (countable) quantity The whole is determined by a defined **count** of a collection or set. The same number of items represents equal-sized parts. The fraction indicates the count of objects in the subset compared to the defined set of objects. ## Representing Fractions Area Model The area – a continuous (measureable) quantity The whole is determined by the defined **area** or region. The same area represents equal-sized parts. The fraction indicates the area of the part compared to the area of the whole. # Representing Fractions Length Model The length – a continuous (measureable) quantity The whole is determined by a defined length. The **same length** represents equal-sized parts. The fraction indicates the length of the part compared to the length of the whole. ORIGO. ### Representing Fractions Number Line Model The distance - a continuous (measureable) quantity The whole is determined by a unit of **distance** from 0 to 1. The same distance represents equal-sized parts. The fraction indicates the location of a point in relation to the distance from 0 with regard to the defined unit. # Representing Fractions | Type of
Model | Type of
Quantity | Whole | Meaning of
Equal-Sized Parts | What the Fraction Indicates | |----------------------|---------------------|--|---------------------------------|--| | Set
model | discrete | determined by a
defined count of a
collection or set | same number
of items | the count of objects in the
subset compared to the
defined set of objects | | Area
model | continuous | determined by a
defined area or region | same area | the area of the indicated part
compared to the area of the
indicated whole | | Length
model | continuous | determined by a
defined length | same length | the length of the indicated part
compared to the length
of the indicated whole | | Number line
model | continuous | unit of distance
from 0 to 1 | same distance | the location of a point in
relation to the distance from 0
with regard to the defined unit | 11 Which representation does not belong? 3 0.34 Show or explain your thinking. Reasoning with Fractions and Decimals © ORIGO Education 3 Which representation does not belong? 206 hundredths + 2 thousandths $\left(2\frac{62}{1000}\right)$ Show or explain your thinking. Reasoning with Fractions and Decimals © ORIGO Education # **Comparing Fractions** | Reasoning with | |-----------------------| | Unit Fractions | ### Using Benchmarks $$\frac{1}{3}$$ or $\frac{1}{5}$ $$\frac{10}{12}$$ or $\frac{4}{6}$ $$\frac{12}{18}$$ or $\frac{4}{7}$ $$\frac{2}{3}$$ or $\frac{4}{5}$ $$\frac{4}{3}$$ or $\frac{7}{6}$ $$\frac{16}{12}$$ or $\frac{5}{3}$ $$\frac{2}{6}$$ or $\frac{6}{15}$ $$\frac{6}{5}$$ or $\frac{5}{6}$ $$\frac{4}{5}$$ or $\frac{7}{8}$ $$\frac{12}{10}$$ or $\frac{26}{20}$ $$\frac{5}{12}$$ or $\frac{10}{16}$ $$\frac{3}{7}$$ or $\frac{5}{8}$ $$\frac{5}{6}$$ or $\frac{3}{4}$ $$\frac{7}{4}$$ or $\frac{8}{6}$ $$\frac{3}{5}$$ or $\frac{6}{7}$ $$\frac{7}{8}$$ or $\frac{4}{3}$ ### **Fraction Fill-up** Take turns to roll the cube. Shade that fraction on a single strip if space allows. It can be the fraction shown on the cube or an equivalent fraction. The winner is the first person to exactly fill 2 strips (other than the strips that shows one whole.). Each player needs a fraction wall. The group needs one cube. Two or more players $-|\Omega$ |-| |-| |-| |- _|ო -|~ Write these fractions on the cube